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SYMBOLS
agrdqray,2a, numerical constants for parabolic velocity profile

bo,b1,b2,b3 numerical constants for parabolic velocity profile

c phase velocity of vortex

Co amplitude of vortex

K circulation constant

o( ) order of magnitude

Q inner region independent variable

R Reynolds number of undisturbed flow

t time

u velocity in streamwise direction

Uy free-stream velocity

v velocity in transverse direction

x streamwise coordinate direction

x"' streamwise coordinate in convective frame
X streamwise coordinate in inner region

y transverse coordinate

y' transverse coordinate in convective frame
; transverse coordinate in inner region

T circulation of vortex

6,60 boundary layer thickness

€ small matching parameter

M small parameter governing size of inner inviscid region
v kinematic viscosity

¢ arbitrary phase angle

¥ stream function

Q vorticity

iii



Subscripts:

c

i

np

center of vortex

inner region
nonparallel flow

outer region

parallel flow

+ when analysis is for

order of approximation

y>yc;

iv

when analysis is for

Y < ¥



SUMMARY

The flow field of a vortex in a viscous shear flow is found by constructing a
uniformly valid asymptotic expansion consisting of an inner solution field repre-
sented, to lowest order, by a two-dimensional, nonlinear, inviscid Stuart vortex and
an outer solution field represented, to lowest order, by either a two-dimensional
parallel or self-similar viscous flow. The technique involves scaling both the
transverse and streamwise coordinates in the vicinity of the vortex as well as allow-
ing for a "slow" variation of the outer viscous flow. Criteria are established for
both the size of the vortical structure and proximity to the boundary surfaces. The
composite solution is a consistent mathematical picture of the flow field at a fixed
streamwise location as the vortical structure evolves past this point., Such a formu-
lation is also useful in the specification of boundary or initial conditions in
numerical fluid dynamic calculations, where an inconsistent setting of these condi-
tions leads to spurious results for rather long computation times,



1. INTRODUCTION

Of general interest in a broad class of wall bounded flows is the dynamic evolu-
tion of vortical structures through the flow. 1In general, these structures are
three~-dimensional and their downstream evolution is exceedingly complex. In fact, as
yet no overall mathematical description of such entities has bheen formulated. It is
one of the intentions here, however, to establish a framework, based on first princi-
ples, which may form a basis for more detailed analytical studies. BAnother motiva-
tion concerns the establishment of boundary and initial conditions in numerical
experiments. In such problems it is of great importance that any distribution of
values, for the dependent variables, be consistent so that no extraneous or nonphysi-
cal results contaminate the solution field. This is especially true when such a
variable as pressure is required from the numerical solution.

The mathematical framework that is used here is the method of matched asymptotic
expansions., An inner solution field is constructed which consists of a two-
dimensional vortical structure. The outer solution field is taken to be an otherwise
undisturbed laminar two~-dimensional parallel or self-similar viscous flow field. 1In
order to allow for a finite-amplitude disturbance field, both the transverse and
streamwise coordinate directions in the inner region are scaled by a suitably defined
small parameter., Since such a short wavelength solution field must, in general, be
coupled to the more slowly varying outer flow, a two-variable expansion procedure in
the streamwise direction is necessitated. The coordinate basis allows for the com-
plete description of the inner flow field. 1In the outer field, the scaled transverse
coordinate is replaced by a transverse coordinate characterizing the overall size of
the boundary layer flow, and the streamwise coordinates are left unaltered,

It has been argued that the dominant dynamics in the vicinity of the vortex are
inviscid (e.g., ref. 1) and that viscous effects, which are omnipresent, play a sec-
ondary role in the overall features of the vortex. With this as a basis, an exact
solution to the appropriately scaled nonlinear, inviscid vorticity transport equa-
tion, the Stuart vortex solution, is taken as the inner solution field to lowest
order. It is found that, to lowest order, this solution is easily matched to a class
of parallel and nonparallel viscous dominated flows. The composite solution field is
constructed from the lowest order inner and outer solutions, and higher order egua-
tions are used to identify the inner variable scaling parameter, Finally, restric-
tions on the proximity of the vortex to boundary surfaces are derived from the
requirement of zero component velocities on the boundaries.

2. INNER SOLUTION FIELD FOR EMBEDDED VORTEX

Consider a two-dimensional vortical structure evolving in an otherwise undis-
turbed two-dimensional viscous flow. The underlying dynamics of the vortex is invis-
cid and its evolution is nonlinear. With these basic requirements, one can deduce
from first principles a vortical structure which is embedded in an otherwise viscous
dominated flow. BAs indicated in section 1, the method of matched asymptotic expan-
sions is used to construct a uniformly valid distribution of flow variables in a
class of parallel and nonparallel wall bounded laminar flows.

An appropriate frame of reference must first be established in the flow. At
some time to the vortex with center at (xc,yc) is assumed to be moving uniformly



with constant phase velocity c¢. The value ¢ used is taken as the Eulerian veloc-
ity at the point (xc,yc) in the undisturbed flow field. The vortex flow is then
stationary in the coordinate system

(1)

X' =x - ct

Y' =Y - Yo (2)

where x' and y' are the streamwise and normal coordinate directions, respec-
tively, and x' = O0' when x = X and t = t_. Such a description allows for the
constructed vortex to be placed in a steady viscous outer flow field which is either
independent of x 1itself or where the flow has reached some self-similar state. 1In
addition, the coordinate lengths x' and vy', appearing in equations (1) and (2),
have been scaled by some characteristic length of the flow such as channel height or
local boundary layer thickness, This, of course, is necessitated by the need for
0(1) scaling in both the inner and outer solution fields., The physical problem of
interest requires vortical structures of small spatial extent relative to the charac-
teristic scales of the overall flow. Such a requirement dictates a rescaling of the
independent variables in the region dominated by the vortical structure. This yields
a stretching of the y' coordinate and the decoupling of the streamwise dependence
into a slow variable, representing the slow divergence of the overall flow, and a
fast variable, representing the locally rapid streamwise variation of the disturbed
vortical flow. The governing differential equations for the embedded vortex motion
are then written in terms of the inner variables:

Y~ Yo (3)

where u 1is a small scaling parameter which is a function of the inverge Reynolds
number and is_chosen such that in the vicinity of the vortex, x and y are o(1).
In general, X can be expressed as a series expansion of x', which would account
for any wave-number variations at higher order; however, to the order of the analy-
sis, these higher order terms can be neglected. 1In order to apply equation (3) to
§lowly diverging flows and maintain a uniform phase velocity along the symmetry line
y = 0, it is necessary to assume a dependence of Y, on the slow variable x!',

[y - yc(x')] (4)

=1
YU

This two-dimensional problem is formulated in terms of the stream function and
vorticity, and in terms of the previously defined inner variables, the governing
differential eguations can be written as

(5)

==
2



dy
R (6)
H 3x H dX' 3y
Q- -1 g2, 2% _2 22y 1 d%yc a3y . 2 dvc 32y
u2 3x'2 H 3x ax! U gx'2 3; M ax' 3¢ 9x*
2 dyc 32w _ l_(dyc)2 32¢ (7
u2 dx’ 3y 9ax u2 dx’ 8;2
3 ~ a
_~(¢_ucy)3L' Y i‘l*_'+lilga_§+ci?3_f}
dy ax' T u gy 3x' ¥ 3x|ay ax' 3y
2 2 a2 d 2
=1—R{729+u2392+2u99 . yg@@_zudyfgn
H ax! 9x 9x' ax'< 3y X' Jy ax'
dyc  32Q ayc\2 32
-2 — = ~+(? Gt (8)
dx dy 9x dx 3y2

where

and R 1is a Reynolds number formed from a characteristic length and velocity scale
of the flow, VY = Y(x',x,y) is the stream function, u = u(x',x,y) and

v = v(x',X,y) are the streamwise and normal velocity components, respectively, and

Q = Q(x',x,y) is the vorticity. Coupled with the governing differential equations,
an appropriate asymptotic expansion of ¢ in the inner vortex region is required. A
suitably general expansion for ¥ is given by

Yy = ¢1(X',§'§) = UR-1 ¢io(x',§,§) + qu-1 ¢i1(x";,§)

+ W3R o (x',x,y) + o(ud) (9)

where the usual requirements for a valid asymptotic sequence are assumed to hold.
Before obtaining the governing differential equations at the various orders of
approximation, it is necessary to quantify the factor appearing in the equations.



In anticipation of the Blasius boundary layer example to be shown in section 5,
one can estimate the size of dy_/dx' for this boundary layer flow. If the trans-
verse coordinate is scaled by the boundary layer thickness at some downstream loca-

tion Xy that is,

§ = 5¢y—— (10)

where U_ is the free-stream velocity outside the boundary layer, then Yo is anal-
ogous to the usual Blasius similarity variable with 0 < Yo < 1. Thus the factor
dyc/dx' can be written, to lowest order, as

dy
c 5 -1/2 25 -1
ax' T T2 ¥Ry =~ 7R (11)

UpXg

where R, = in this boundary layer case., With this specification completed,
the governing differential equations at the various orders can be derived.

The O(M) equation is obtained by substituting the expansion equation (9) into
equations (5) through (8):

3 ~ Ojg  9Vig 9jg 5 Mig 1
5y 10 9% 3% dy 2 "%k 5y  wr 0
where
2
2.4 = V¥, (13)

Note that in the present formulation, the lowest order vorticity is not simply deter-
mined by gradients of the streamwise velocity but is determined by gradients of both

the streamwise and transverse velocities, In order to be consistent with the initial
physical assumptions concerning the dominant inviscid behavior of the vortex motion,

it is appropriate that the limit (ur)~' > 0 be chosen in equation (12). The

o(#) equation reduces to

350 99 3o 99
i0 i0 _ i0 i0 =0 (1)

3y 9% 3x  dy




or

3(Vi02i0) o

— (15)
3(y,x)

where
Vio = VYio - ¥, Qi0 = -V2;9 (16)

The set of equations, equations (13), (15), and (16), were originally studied by
Stuart (ref., 2) in the context of finite-amplitude oscillations in mixing layers.
The solution to the set, appropriate to the physical problem at hand, is

c§ + K ln[cosh ; + Cg cos(x + ¢)] (17)

wio(§,§)

e—2$io/K

Qi0t%,¥) = R30P50) = -K[1 - c52] (18)

where Co is a constant constrained by (ref. 1)
o< c <1 (19)

and K 1is a constant associated yith the circulation of the vortex having bounding
contour, -¢ € x < 27T - ¢, - < y < «, and ¢ 1is an arbitrary phase angle. The
circulation of the vortex, as given by equation (18), is easily determined (ref. 2)
as

T = -4mK (20)

The distribution given in equations (17) and (18) is rather general, in the
sense that the constant c, governs the gross features of the vortex in a range
varying between a point vortex distribution (c_ + 1) and an unperturbed hyperbolic
tangent velocity profile (co = 0). The stability characteristics of this vortex
distribution have been studied in reference 3; however, the intent here is not to
conduct such a stability study but to examine the composite flow structure at some
point in space and time when such a vortex is evolving through the flow., This is
also distinct from recent work by Pierrehumbert and Widnall (ref. 4) and the earlier
work of Browand and Weidman (ref. 1), where such vortical distributions were studied
in connection with free shear layers. There the objective was to examine the inter-
action dynamics and critical parameters of interacting vortices which spanned the
width of the shear layer.



This lowest order solution leaves the two parameters 1 and K unspecified.
Higher order inner solutions are needed to fix p, and the matching process will help
structure the outer solution field. The o(uz) differential equation is

3(¥i1,R40)  3(Pi0,241) 1 Svel) 3i0,bio,xy) e 10 1 oo
—= + ~ = - = + c = + V430 (21)
a{y,x) A(y,x) uR;/z 2 3(y,x) oy u2Rr
where
- 32939
Q:q = _V2¢. , VYig wv = —=——= (22)
i1 i1 i0,xy 3% 3y

The 7uestion that arises at this point is the choice of the appropriate limit for
(uR1 2)_1 Since the differential operator on the left-hand side of equation (21)
is different than the lowest order differential operator, it is consistent to solve
the homogeneous problem at this order; therefore,

1/2)—1 -1/2 (23)

(UR > 0, B >> R

is the chosen limit. The homogeneous form of equation (21) is readily solved by
introducing the new independent variable

-9, /K
= e (24)

and transforming to the new coordinate system (Q,g). The resulting equation is

3 [F] =0 (25)
ax

where
Flo) = o, - 201 - c02)92¢i1 (26)



and, in general, Qi1 and ¢i1 can both retain some periodic dependence on x. It
is necessary to continue to the next order to further identify 911 and wi1 and
uniquely determine u,

The o(u3) equation can be written as

3(Pi0.252) . 3(Wiz,Ri0)  3(Wiq.24q) Y1 [_ 5 y] 5 3($10,¥i0,%y)
3y, %) 3(y,x%) 3(y,x) w2rl/2p 2 °°¢ 3(y,x)
39
.o #-2} .1y, (27
oy u3r
where
2, = 'Vz‘”iz (28)

Once again transforming to (Q,;) coordinates would place equation (27) in a more
tractable form. 1In light of the o0(p2) equation (eq. (25)), the right-hand side of
equation (27) cannot retain any secular terms, that is, any periodic functions of

X. In the absence of any decision on the limiting values of the terms continuing p
and the Reynolds number, it is necessary to examine the functional behavior of

3(¥iq,92449)
3(y,x)

or

9 (YPs4,0:4) -
- R L 6o, %) (29)
a(Q,x)

in (Q,x) coordinates. If Vi1 = wi1(Q,§) and Q49 = Qi1(Q,§), then equation (29)
becomes '

Wil ‘
-—%‘l[F + 49(1 - 002)11'11] = G (30)

ox



where ' denotes differentiation with respect to Q. In order for this term to be
independent of x it is necessary for ¢i1’ and therefore Qi1' to be functions only
of Q. The structure of these two functions can be further delineated by referring
back to equation (26). Equation (26) can be expanded to give

Flo) = o1 - c02>{%(9,¢i1) Qb - 2wi1} - £Q,¥;,)
+ 2 cg cos(x + ¢) £(Q ¥jq) (31)
where

£00,¥,.) = oW1+ Qv (32)

i1

Clearly £(Q,¥.,.) must equal zero and the resulting solution is wi1 = Constant.
Without any loss of generality in the inner solution field, it is sufficient to take

] =., =0 (33)

Now the limit processes in equation (27) can be performed. Since inhomogeneous terms
should appear at this order, it is only necessary to determine whether nonparallel or
purely viscous effects predominate. 1In the absence of any nonparallel effects the
viscous limit dominates, that is,

wo=gr /3 (34)
p

If the outer flow is slowly diverging, the appropriate limit is

-1/3
i =u=R/ (35)
np P
since
1/2
RX > UR

Even though this analysis was not motivated by questions of stability, it is worth
noting the viscous layer size obtained here (eq. (34)) and to compare these neces-
sarily nonlinear results with previous nonlinear stability studies, such as those
motivated by the ideas of Benney and Bergeron (ref, 5). In those studies nonlinear
effects dominated in the critical layer and viscous effects were secondary. This, of
course, is consistent with the structural ideas presented in this work. Finally, it
should be pointed out that the nonparallel effects are sustained by terms originating
in the nonlinear advection terms. In the absence of such stress gradient effects,

8



the slow variation of the outer flow would not be felt by the vortex to this order of
approximation,

3. INTERMEDIATE MATCHING REGION

In section 2, the inner solution field was established. This solution must be
formally matched to an appropriate outer solution in order to form a uniformly wvalid

composite expansion, The process involves the introduction of suitable intermediate
variables (ref. 6) given by

y -y (x')

Ye = ¢ (36)
where

E—+ © as e >0

U
and

- EYe

Y= as |y = ve| >0

Since the vortex is embedded }n the flow there are two distinct match%ng regions:
the region above the vortex y + = and the region below the vortex vy + -», TIf the

lowest order inner solution is written in terms of the intermediate variables, the
inner solution (eq, (17)) becomes

ey

P4 = CYgE + HK ln[cosh £+ Co cos(x + ¢ﬁ + 0(u3) (37)

ey
if |—~E

” + », the two matching limits of equation (37) can be written as

Y; * (c + K)ey, = UK 1n 2 + K ln[1 + coe_ey‘:/u cos(x + ¢q

[
+ o(u3) (%+ w) (38)



Pi > (c - K)eye -= UK 1n 2 + WK ln[1 + coe—eys/u cos(x + ¢ﬂ
£y
+ olu>) (—u—€+ -w) (39)

These stream function values will indeed match to the 0{(1) outer stream function
distribution, and the contributions to the respective outer flow regions are

wil+® + (¢ + K)eye (40)
wil-w > (e - Kley_ (41)

It is important to note that in the present formulation, the periodic streamwise
dependence is lost in the matching process because of the transcendentally small
effect. This eases the restrictions on the interpretation of the present formulation,
since the streamwise range of the vortex disturbance is limited here to a single
wavelength, In addition, this allows the inner solution to be matched locally, point
by point, to an outer flow which is either parallel or self-similar, but nevertheless
slowly diverging. In the next two sections, an example of each type of flow will be

given.

4, OUTER VISCOUS FLOW FOR PARALLEL FLOW CASE

The independent variables appropriate for the general outer problem are x', ;,
and y and are assumed to be scaled to 0(1). For the moment, the derivations will
be rather general in order to lay a proper framework for both the parallel flow case
considered in this section and the nonparallel case to be considered in the next
section, The general form of the equations for the two~dimensional outer flow prob-

lem can be written as
9
u = v (42)

vV = - L l_ﬁg (43)

32y

82y 3%y 1 3%y
9% 9x'

3y2  3x'2 2 3x%2 (44)

2
n

Y| an 1 3R 3 1 3v]aQ 29 2 2 2
a_i[ax_',,ig]_[_L+__w]_=1[a__+uz_+1_a~n+% 020 | 0,

10



Recalling the form of the outer limit of the inner solution, it is seen that the type
of outer flow that is considered can be explicitly independent of both x and x'.
Then, if the outer flow is parallel or even dependent on some similarity variable,
the lowest order outer solution and inner solution can be matched, The example prob-
lem to be considered in this section is plane Poiseuille flow. The outer dependent
variables are independent of x and x' to lowest order, that is

Y =9 (y) (46)

[o] os

where s is + for y >y, and s is - for y < y,. Equation (45) reduces to
the trivial form

azao
5 =0 (47)
2
dy
with solutions
a a
0 2 1 3
1I10+—2(y—1) +6(y—1) +a2(y—1)+a3 (48)
b b
0 2 1 3
Vo =3 ¥ +-y + by + by (49)

where the variables have been scaled by the channel height h and the maximum undis-
turbed inflow velocity U The boundary conditions imposed at lowest order are

bV ly=vy) =% (y=y) =0 (50)
2(1 - ycz) - %«1 - yc3) (s + at y = 1)
¥ = (Undisturbed values) (51)
os 2 4 3
-2Yc +3 Y, (s - at y = 0)
aw )
o+ o~
ETH 5y = 0 (52)

11



In anticipation of the matching, the value for the vortex phase velocity needs to be
determined. This velocity is the velocity at y = Yo if the flow did not contain
the vortex. 1In the channel flow case

c =4y (1 - y.) (53)

If the boundary conditions are applied to equations (48) and (49), the constant coef-
ficients become

6a3 3a0 —6b3 3bO
a, = + , b, = —=> - — (54)
L S S S C I L £
" Yo ¥ c
a, = 0.0, b, = 0.0 (55)
2 4 3 2 4 3
a, = 2(1 - v, ) - 3(1 - Y. ), b3 = —2yc + 3 Yo (56)

where the remaining coefficients, ag and bO, are determined from the matching.
The outer variables (1 - y) and y can be written in terms of the matching variable

ye and are given by

1 -y = {1 - yc) - ey, (57)

y = yc + eye (58)

Substituting these forms into equations (48) and (49), one can obtain V., and wo_
in terms of powers of €y.. From section 3, it is seen that the matching occurs with

coefficients of Eye. This process yields the coefficient values

6a
ag = - 3 ] fjc + K; (59)
(1 - yc) L
6b
b = - 3 _ 2(c - K) (60)
0 2 y
Yy C

The remaining coefficients a and b are then determined from these values of
a and b,., Note that the coefficients are all bounded in the present formulation.
This results from the fact that the inner region is assumed to be of 0O(u) in size;
therefore, the vortex should be at least a distance of 0O(u) away from the bound-

12
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aries to be consistent with the basic assumption about the inner region. A uniformly
valid composite solution, to lowest order in the dependent variables, can be formed
by summing the lowest order inner and outer solutions and subtracting out the common
part (ref, 6). The resulting composite solutions are

a0

2 2 a1 3 3 -1/3
(-9 - 1=y %] = HO-v P - -y 03] - Kty )+ kT

ln[cosh ; + e cos(;<+¢)] (y>yc)
b o= (61)
bg 2_ 2] . b_‘l[ 3 3] ( ) -1/3 1 [ h 3 ~ ] (y<
S 1Y =Y, a1y -y |+ Kly-y ) + KR n|cosh y + ¢ cos{x+¢) b's yc)
( aq . Co cos(x + ¢ |7
-ag(1 - y) + ——(1 - ¥)2 - X + K tanh y{1 + = (y > yo)
2 cosh y

=< f (62)

b4 ~
bgy + E—-yz + K + K tanh y §1 +

(y € yo)

Co cos(x + ¢)}‘1

cosh ;

\

(0 < vy £1) (63)

cosh } cosh §

co sin(x + ¢) { co COS(X + ¢)}_1
K 1+

~ c., cos(x + ¢)
Q = —KR1/3[1 - coz] sechzy{ + 2 (64)

2 ag - a1(1 - vy) (y > yc)
cosh ;

by + by (y < y,)

where ;, ;, and ¢ were defined in section 2, u = R-‘I/3 has been used, and the
constant coefficients were defined earlier in this section. It should be pointed out
that the vorticity is discontinuous at y =y, at first order, o0(1); however, to
zeroth order, O(R ), the vorticity is continuous across the channel. If higher
order terms are included in the expansion procedure, this singularity would be
removed. As can be seen from eguations (62) and (63), the velocity boundary condi-
tions at the wall will, in general, not be satisfied to the order of the approxima-
tion for all values of Yo and K. The task then is to delimit the range over which
Yo and K may vary. At y =0 and y =1 the velocity fields reduce to

cq cos(x + ) | -
o ©08 ¢ + o(r72/3

u(y=0) = K4 - tanh R1/3yc 1+ ) (65)

cosh R1/3yc

13



Cy sin(x + ¢) c. cos(x + &)1 -

v(y=0) = K —— LA ¢ + o(r7%/3) (66)
cosh R'/3y, cosh R1/3y,

¢, cos(x + ) -1 _
uly=1) = k<1 - tamh R'/3(1 - yo |1 + —2 4 + o(r™%/3) (67)
cosh R1/3(1 - y.)
Co sin(x + ¢) Co cOS(X + ¢) -1 _

v(iy=1) = K © ,?4,_ 1+ 2 9 + O(R 2/3) (68)

cosh rRV/3(1 - Ve) cosh RV/3(1 - Ye)

where the accuracy of the approximation O(R—2/3) in the velocity field is based on
the order of approximation obtained in the inner solution field. Since the periodic
functions are bounded, the restrictions on vy, must come from the hyperbolic func-
tions. Note that the above does not put any restrictions on the wvalue of X; how-
ever, restricting K to values less than 1 would improve the accuracy with which the
boundary conditions are satisfied. A cursory examination of equations (65)

through (68) reveals that the hyperbolic functions are bounded as

tanh R1/3yc = 1.0 - o(r™?/3) (69)

cosh R1/3Yc

n

O(coR2/3) (70)

tanh ®' /3 (1 1.0 - o(r"2/3) (71)

1
n"<i
n

/34 2/3, (72)

I

cosh R -v) o(c R
C o]

where the constant ¢ is included in the restrictions on the hyperbolic cosine
factor for generality. If an (1) constant of proportionality is assumed in these
order estimates and finite-amplitude disturbances are considered, then the following
limits on y_, can be extracted from equations (69) through (72)

2/3

“1/3 1n(2¢ R
(o]

-1/3 2/3, Sy g1-R

R 1n(2c°R ) (73)

14



where

ZcoR2/3 > 1 (74)

With this determination of the limits on Yo as much information as possible has
been extracted from the solution to this order. The only parameter in the problem
that has not been delineated in any concise way 1is the circulation constant K.
Constraints on K may arise at higher orders, either through the matching process or
the application of the boundary conditions. Nevertheless, for the present study, K
is a free parameter of 0(1), whose value will be chosen to best suit the practical
problem at hand.

As a test case, computations were carried out at a Reynolds number, based on
channel height and maximum undisturbed inflow velocity, of 104. The amplitude of the
Stuart vortex c_ was set at 0.25 (refs. 1, 3, and 4) and K was chosen to be 0.20.
The value of U corresponding to this Reynolds number is 0.046. The results of the
streamwise velocity distribution at various values of (x + ¢) are shown in figure 1.
The results reflect, as (x + ¢) varies from O to 2w, the effect of a passing vortex
on an otherwise fully developed parallel flow at a fixed point in space. It is
important to note that the vortex, which is of limited spatial extent in the present
example, affects a rather large portion of the channel flow. This result indicates
that gquantities such as surface pressure and wall shear stress are modified by the
passage of such a vortical distribution.

In the next section, the more relevant case of nonparallel flow is considered;
however, the guidelines established in this section can be applied directly to this
more deneral case.

5. OUTER VISCOUS FLOW FOR NONPARALLEL FLOW CASE

As indicated earlier, to the order of the approximation, nonparallel self-
similar outer flows can be examined within the present context. Consider now, as the
nonparallel flow example, a Blasius boundary layer flow. Since the inner Stuart
vortex solution was found to be independent of x', the procedure used to obtain a
composite solution for the channel flow can be applied to the boundary layer flow
over a continuous range of x', with the only change at each x' location being the
location of y_. It should be recalled at this point that the nonparallel effects
which appear in the inner region equations as dyc/dx' were approximated to lowest
order by the constant term —SyCR; 2/2; thus, any x' variation of dyc/dx' was
removed. The lowest order equation in the outer region is obtained from equation (45)
by using the following approximation to V:

RCIR R L8 (75)
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where, as before, no outer flow dependence on x 1is assumed. The lowest order vor-
ticity transport equation is

2 2
E)(q)os'gzos) _ A 3 Qos 3 Qos (76)

+
2

a(y,X') - axyz ay

Now, if the usual boundary layer approximations are made, equation (76) can be
written in the familiar form

o
+
<
|
I

2
1 37u
- 24 (77)
3y R 3y2
where R 1is a Reynolds number formed from the free-stream velocity U_  and the
boundary layer thickness at x = X' + X5, that is

VX
§(x) = S5 (78)

oo

In a completely analogous manner with the usual Blasius method, the resulting stream
function equation is

2¢g; + 25"l)'c;s,'pos =0 (79)

where the differentiation can be interpreted to be with respect to y in light of
the nondimensionalization by §&(x). Equation (79) can be solved given the appro-
priate boundary conditions. As was the case in plane Poiseuille flow, the outer flow
boundary layer is divided into two regiomns, y <y, and y > y.. First the region

y < ¥, Ais considered.

Since the solution to the ordinary differential equation (eg. (79)) will be
determined by numerical integration, it is necessary, for matching purposes, to
expand the outer stream function solution in a Taylor series expansion about Yor

oY
Yo (yry ) =¥ (y=y ) + (y - y)) 8; + e (80)
Y=Y,

Note that the question of continuity of 3y /3y across vy does not enter into the
present context, since the formulation of aOEomposite solution valid over the whole
domain is a superposition of two distinct outer fields, Each outer solution field is
viewed as a distinct problem with appropriate boundary conditions applied at y = 0
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and y =y, for y < Yo and at y = y, and y > o for vy > Voo Thus, at a fixed
x' the part of the outer solution which matches to the inner solution is

p._(y=y ) = c =K (81)

Emboldened by the success in the channel flow, the same procedure used to determine
the perturbed outer solution is followed in the present case, The boundary condi-

tions associated with undisturbed stream function value and zero velocity at y =0
are

wo_(y=0)

0 (Undisturbed value) (82)

il
o

b _(y=0)

(83)
o

Equations (81) through (83) are sufficient to determine the stream function, as well
as its associated derivatives, from y =0 to y=y,. 1In this example, it should
be noted that the stream function value at y = Yo will not be 0, although it will
be continuous since ¢ (y =y ) will be equated to ¢y (y =y ). Now the region

. . 10— c o+t c
Yy > ¥Yg will be considered.

From the outer limit of the inner solution (eq. (79)) and the series expansion

(eq. (80)), the inner limit of the ocuter solution which matches with the inner solu-
tion is

' = = 8
¢0+(y yc) c + K (84)
Since the stream function is assumed continuous across y = Yor

Yo (y=y ) = v (y=y) (85)
the only remaining boundary condition to be applied is at the free stream. This
condition is given by

¢(13+ > 1.0, y > @ (86)

This, of course, is the usual free-stream condition, and the exact location where
equation (86) holds is left intentionally arbitrary to account for any boundary layer
thickening due to the presence of the vortex., This extra degree of freedom was not
present in the channel flow problem due to the rigid bounding surfaces. Equa-

tion (79), coupled with the boundary conditions appropriate to the region of interest
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were solved with a fourth-order variable interval Runge-Kutta method. The composite
solution for the dependent variables can be formally written as

-1/3 - ~
¢o+(y) - K(y - yc) + KR ln[cosh y+ ¢ cos(x + ¢)] (y » yc)
q) =~ (87)
-1/3 - -
wo_(y) + K(y - yc) + KR ln[cosh y + c0 cos(x + ¢)] (y < yc)
( \ - Co cos(x + ) h
Yor (¥) = K + K tanh yq1 + — (y > yo)
cosh y
u = < ? (88)
. - Co cos(x + ¢)|"
VYo (y) + K + K tanh y§1 + — (y £ yg)
\ cosh y
r )
co sin(x + $) c, cos(x + )] ?
K — — { + = = } (y > yo)
cosh y cosh y L
ve < (89)
cy Sin(x + ¢) cg cos(x + ¢)]~T
K — . 14— — (y < yo)
k cosh y cosh y D,
- c, cos(x + ¢)|~2 o+ (y) (y > yo)
Q = -R1/3K[1 - coz] sechzy 1+ = = dl} - (90)
cosh y Yo (¥) (y < ve)

where i, ;, and ¢ were defined in section 2, u = R"1/3 in this case, and terms
of 0(R72/3) were neglected. Note that once again the vorticity is discontinuous
at 0(1). The restrictions on the location of the vortex can once again be derived

from the hyperbolic functions. In light of the arbitrary location of the top free-
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stream boundary, Yo is only limited here to its proximity to the boundary at
y = 0., The restrictions are

-1/3
>
Yo ” R

2/3 2/3

In(2 ¢ R ) (2c R > 1) (91)
o o

Once again the parameter K 1is free to be chosen for the particular physical problem
at hand.

As a test case, a computation was carried out at a Reynolds number, based on
local boundary layer thickness and undisturbed free-stream velocity, of 103. The
amplitude of the disturbance c, was set at 0.25 and the constant K was set equal
to 0.2. For the chosen Reynolds number, the small parameter u was fixed at 0.1.
Figure 2 shows the distortion of the streamwise velocity profile as the vortex passes
by a fixed point streamwise location X,+ Once again the effect of the vortex is
felt throughout most of the boundary layer, even though its spatial extent is bounded
by uH. It is also worth noting that this type of disturbance can be present near the
top of the boundary layer. The existence of such finite-amplitude disturbances near

the top of the layer is a requisite for the receptivity of the boundary layer to any
free-stream disturbances.

6. DISCUSSION

As was stated in section 1, the intent was to construct a uniformly valid flow
field, to some order of approximation, that would mimic the structure of a real flow
in the presence of a finite-amplitude vortical disturbance. The basic structure for
the vortical field was taken to be a Stuart vortex., Such a field is derivable from
the general vorticity transport equation when both the transverse and streamwise
coordinates are scaled by the same small parameter. As was seen in the two test
cases, however, the influence of the vortex spreads throughout most of the flow even
though its dynamic features dominate a small spatial region of 0O(u). In addition,
the analysis that was presented necessarily restricts the results to large wave-
number disturbances,

It is beneficial at this point to place the present work in context with pre-
vious work on vortices in the presence of solid boundaries. For example, Walker
(ref, 7) studied the boundary layer produced by the presence of a single rectilinear
vortex filament above an infinite plane wall. It was concluded that no steady flow
field exists and that a recirculating eddy, which is formed in the boundary layer
flow, causes rather explosive growth of the boundary layer itself. The problem pre-
sented in the present paper is fundamentally different. It is assumed here that the
vigscous flow already exists and that a vortex, which is necessarily of small spatial
extent, is embedded within this flow. In the absence of the base undisturbed viscous
flow, the present formulation is ill-posed since it would be impossible for the
boundary condition at the boundaries to be satisfied, in general. For these reasons,
it is felt that the present problem closely resembles a real flow situation of a
vortical structure evolving through an otherwise undisturbed flow. It does remain an
open question as to the behavior of the vortex as it evolves in time and space, but
the present work shows that a stationary situation can exist and can be described in
a consistent mathematical framework., This framework yielded some interesting fea-
tures which are worth noting.
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In the analysis, nonparallel effects were accounted for by requiring that the
entire vortex move uniformly through the flow. Thus, for the laminar boundary layer
flow, the vortex is inclined with respect to the wall, and as was mentioned in
section 5, this region is sustained by nonlinear stress effects. The final comment
concerns the effect of the vortex on the boundary surfaces. Recall that the wall
shear stress, that is 3du/dy, was allowed to vary in the calculation; only the stream
function and velocity at the walls were taken as either undisturbed flow values or
zero. This allowed for the effect of the passing vortex to be felt in both the wall
shear stress and pressure signatures.

The work presented in this paper is intended as a first step in a more complete
and accurate mathematical description of vortical structures, three-dimensional as
well as two-dimensional, embedded in a broad class of viscous outer flows.,

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 31, 1983
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